A sequent calculus for Lewis logic V: preliminary results
نویسندگان
چکیده
The logic V is the basic logic of counterfactuals in the family of Lewis’ systems. It is characterized by the whole class of so-called sphere models. We propose a new sequent calculus for this logic. Our calculus takes as primitive Lewis’ connective of comparative plausibility : a formula A B intuitively means that A is at least as plausible as B. Our calculus is standard in the sense that each connective is handled by a finite number of rules with a fixed and finite number of premises. Moreover our calculus is “internal”, in the sense that each sequent can be directly translated into a formula of the language. We show that the calculus provides an optimal decision procedure for the logic V.
منابع مشابه
A natural sequent calculus for Lewis' logic of counterfactuals
The logic V is the basic logic of counterfactuals in the family of Lewis’ systems. It is characterized by the whole class of so-called sphere models. We propose a new sequent calculus for this logic. Our calculus takes as primitive Lewis’ connective of comparative plausibility : a formula A B intuitively means that A is at least as plausible as B, so that a conditional A ⇒ B can be defined as A...
متن کاملA Standard Internal Calculus for Lewis' Counterfactual Logics
The logic V is the basic logic of counterfactuals in the family of Lewis’ systems. It is characterized by the whole class of so-called sphere models. We propose a new sequent calculus for this logic. Our calculus takes as primitive Lewis’ connective of comparative plausibility : a formula A B intuitively means that A is at least as plausible as B. Our calculus is standard in the sense that each...
متن کاملAdmissible Substitutions in Sequent Calculi
For first-order classical logic a new notion of admissible substitution is defined. This notion allows optimizing the procedure of the application of quantifier rules when logical inference search is made in sequent calculi. Our objective is to show that such a computer-oriented sequent technique may be created that does not require a preliminary skolemization of initial formulas and that is ef...
متن کاملSequent Systems for Lewis' Conditional Logics
We present unlabelled cut-free sequent calculi for Lewis’ conditional logic V and extensions, in both the languages with the entrenchment connective and the strong conditional. The calculi give rise to Pspace-decision procedures, also in the language with the weak conditional. Furthermore, they are used to prove the Craig interpolation property for all the logics under consideration, and yield ...
متن کاملStandard Sequent Calculi for Lewis' Logics of Counterfactuals
We present new sequent calculi for Lewis’ logics of counterfactuals. The calculi are based on Lewis’ connective of comparative plausibility and modularly capture almost all logics of Lewis’ family. Our calculi are standard, in the sense that each connective is handled by a finite number of rules with a fixed and finite number of premises; internal, meaning that a sequent denotes a formula in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015